Package: Opportunistic (via r-universe)

September 4, 2024

Type Package
Title Routing Distribution, Broadcasts, Transmissions and Receptions in an Opportunistic Network
Version 1.2
Date 2017-06-27
Author Christian E. Galarza, Jonathan M. Olate
Maintainer Christian E. Galarza <cgalarza88@gmail.com></cgalarza88@gmail.com>
Description Computes the routing distribution, the expectation of the number of broadcasts, transmissions and receptions considering an Opportunistic transport model. It provides theoretical results and also estimated values based on Monte Carlo simulations.
License GPL (>=2)
Suggests hopbyhop, endtoend
Repository https://chedgala.r-universe.dev
RemoteUrl https://github.com/chedgala/opportunistic
RemoteRef HEAD
RemoteSha 84c74152f22e7f79b5b0ce18021031951e4e60cf

Contents

Index

Expecte MonteC																																			
routes	 •	•	•	•	•	•	•	•	•	 •	•	•	•	•	•	•	•	•	•	•	 •	•	•	•	•	•	•	•	•	 	•	•	•	•	4
																																			6

1

Expected

Description

This function computes the probability of success and the expected values of the number of broadcasts, transmissions and receptions for an Opportunistic model.

Usage

Expected(p)

Arguments

р

vector of probabilities of length N where N represents the number of hops

Value

A matrix with the probabilities and expected values for an Opportunistic model for all hops sizes $\leq N$

Author(s)

Christian E. Galarza and Jonathan M. Olate

References

Biswas, S., & Morris, R. (2004). Opportunistic routing in multi-hop wireless networks. ACM SIGCOMM Computer Communication Review, 34(1), 69-74.

See Also

routes, MonteCarlo

Examples

```
#An N=3 Opportunistic system with probabilities p = c(0.0,0.4,0.1)
res1 = Expected(p=c(0.9,0.4,0.1))
res1
```

MonteCarlo

Description

This function estimates via Monte Carlo the probability of success and the expected values of the number of broadcasts, transmissions and receptions for an Opportunistic model.

Usage

MonteCarlo(p, $M = 10^{4}$)

Arguments

р	vector of probabilities of length N where N represents the number of hops
М	Total number of Monte Carlo simulations

Details

N is computed from p length. M is code10⁴ by default.

Value

A vector with the success probability and expected values (broadcast, transmissions and receptions) for an N Opportunistic model.

Author(s)

Christian E. Galarza and Jonathan M. Olate

References

Biswas, S., & Morris, R. (2004). Opportunistic routing in multi-hop wireless networks. ACM SIGCOMM Computer Communication Review, 34(1), 69-74.

See Also

routes, Expected

Examples

#Monte Carlo simulation for an N=3 Opportunistic system with probabilities #p = c(0.0, 0.4, 0.1)

res2 = MonteCarlo(p=c(0.9,0.4,0.1),M=10^4)
res2

routes

Description

It provides the different possible routes, their frequency as well as their respective probabilities when considering uncertain probabilities lying on a interval p +- delta.

Usage

routes(p, delta = 0)

Arguments

р	vector of probabilities of length N where N represents the number of hops
delta	Delta value when considering uncertain probabilities. The interval is of the type
	p + - delta.

Details

By default, delta is considered to be zero disregarding uncertainty.

Value

A data frame containing the routes, frequencies, and respective probabilities.

Author(s)

Christian E. Galarza and Jonathan M. Olate

See Also

Expected, MonteCarlo

Examples

```
## Not run:
#An N=7 Opportunistic system with probabilities p1 = 0.7,...,p7 = 0.1
```

```
> p = seq(0.7,0.1,length.out = 7)
> routes(p)

route 1 1 p1^7 0.08235
route 2 6 p1^5*p2 0.10084
route 3 10 p1^3*p2^2 0.12348
route 4 4 p1*p2^3 0.1512
route 5 5 p1^4*p3 0.12005
route 6 12 p1^2*p2*p3 0.147
route 7 3 p2^2*p3 0.18
```

routes

route	8	3	p1*p3^2	0.175
route	9	4	p1^3*p4	0.1372
route	10	6	p1*p2*p4	0.168
route	11	2	p3*p4	0.2
route	12	3	p1^2*p5	0.147
route	13	2	p2*p5	0.18
route	14	2	p1*p6	0.14
route	15	1	р7	0.1
Total		64		

End(Not run)

Index

* Opportunistic Expected, 2MonteCarlo, 3 routes, 4 * boradcast Expected, 2 MonteCarlo, 3 routes, 4 * network Expected, 2MonteCarlo, 3 routes, 4 * receptions ${\tt Expected, 2}$ MonteCarlo, 3 routes, 4* routing routes, 4 * transmissions ${\tt Expected, 2}$ MonteCarlo, 3 routes, 4 Expected, 2, *3*, *4* MonteCarlo, 2, 3, 4 routes, 2, 3, 4